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r radial distance
Abstract Sr area of a rotor in X-Y plane, =R c,
This paper offers analytical capability for XY, 2 normalized coordinates with respect to R
aerodynamic parametric studies and sensitivity analysis of B tip length parameter
rolary wings in axial flight by using a 3-dimensional un- o twist shape parameter; also (an—l(gn)
distorted wake model in curved lifting-line theory. The £ inplane curvature
governing equations are solved by both the Multhopp In- ] twist angle
terpolation technique and the Vortex Lattice method. The 8(r) 8(x)/0,
singularity from the bound vortices is eliminated through 9 twist angle at blade root
the Hadamard's finite part concept. Good numerical 90 . Je at blade ti
agreement between both analytical methods and finite dif- 1 twist angle at e up
ference methods are found. Parametric studies were made K out-of -planc curvature ] )
to assess the effects of several shape variables on n dfxmmy variable representing  spanwise
aerodynamic loads. It is found, for example, that a rotor dxstance_
blade with out-of-plane and inplane curvature can A taper ratio, ¢,/c,
theoretically increase lift in the inboard and outboard p air density
regions respectively without introducing an additional in- c rotor solidity, bc,/mR
duced drag, T twist ratio, 8,/6,
Notation v inflow ratio, = v; +v./6,
AR {ratio. R/ ¢ v, climb inflow ratio, V;,.,/R Q
. m: curve Sl;)pe ox v; induced inflow ratio, O+
b number of biades v, induced inflow ratio from curved lifting-line
c chord length Or induced inflow ratio from trailing vortex
€ chord length at blade root lines
3 chord length at blade tip & tan”!(ex)
¢ equivalent chord '} azimuthal angle; also Digamma function
E’ e r circulation ; also Gamma function
c otal Uit coefficient r normalized circulation, [/R’Q8,,
L . . Q angular velocity
Cp. total induced drag coefficient
Cp total induced power coefficient Introduction
K coefficient factor, ¢, /¢, A key ingredient in developing reliable and efficient
. . i imizati f aerospace structures
M I lation procedu{e.s for design optimization o '

M ;‘;’;ﬁﬁ;g;ﬁnﬂfﬂ&r otP l;:::gll; i:ma © is sensitivity analysis. This is especially tue for
m summation integer; also weighting factor aerodynamic sensitivity analysis which is of growing im-

index ’ portance for aerodynamic shape optimization as well as

: aram the interdisciplinary process of integrating aerodynamics
g :_J:ws:mr::igs eier with other disciplines. A recent paper by Sobieski' stres-

ses the need for aerodynamic sensitivity analysis and



makcs a plea to the aerodynamic community for extend-
ing their present capability to include scnsitivity analysis.
The present paper attempts to partially fill this void for
the rotary wings.

In recent years there has been a resurgence of intcrest
in the idea of reducing the induced drag of an aircraft by
wing design. Some examples of rccent work suggest the
use of inplanez"4 or out-of-plane5 curvature. There have
been few attempts to extend this idea to rotary wings. The
present paper is intended to establish sensitivity analysis
for rotor blades in axial flight.

In previous work, Rand and Rosen® developed a lift-
ing linc model which is capable of calculating the
aerodynamic load along inplanc curved-blades of a
helicopter in hovering and axial flight. Their method,
however, should be classificd as the Vortex Lattice
Mcthod (VLM) and is an approximate approach to solve
the singular integro-differcntial cquation. The present
paper deals with the same problem by using an analytical
approach to solve the more gencral govcming equation
which can include the analysis of out-of-plane curved
bladcs. The analytical approach, in the present paper, uscs
thc Multhopp Interpolation technique which is a special
case of Fourier Series method and widely used in fixed-
wing cases for both lifling-linc7 and lifling-surfaccg‘9
models. As mentioned in Ref. 6, the difficulty, raiscd in
the case of inplane curved blades, is the fact that the
velocity which is induced on the lifting linc by the bound
vortex itsclf obtains infinite values. This phenomenon is
duc to the singularity of the order 1/1xl which occurs in
the dcvelopment. This singularity may be handled
clegantly by the Hadamard’s finitc part conccptm as
described in Ref. 11. In this paper, we apply a similar
techniguc to climinate the singularity.

This paper also contains paramctric studics which
can quickly assess the effects of scveral shape variables
on acrodynamic loads. The design variables are taper
ratio, tip length, tip shape, aspect ratio, inplanc curvature,
out-of-plane curvature, twist ratio, and twist shape. Most
rotor blades may be described by these shape parameters.
Acrodynamic functions arc local circulation, local in-
ducced vclocity, total lift cocfficient, total induced drag
cocfficicnt, lift-drag ratio, and induced power cocfficicnt.
The rotor performance is strongly dependent on these
acrodynamic functions.

The present paper deals with a rotor system having b
identical, equally spaced blades. These blades rotate about
the shaft with a constant angular velocity Q.. The rotor in
Figs. 1 and 2, has a radius R and no hinge offset. The
stcady lifting-line theory, bascd on the three-dimensional
undistortcd wake model, will be applicd to cases for

which helicopter rotors or propellers are in axial flight
(including hovering). The shape design variables charac-
lerize three essential paramelers of a blade; lifting-line
shape, chord distribution, and wist distribution. The
design variables are taper ratio, tip length, tip shape,
aspect ratio, inplanc curvature, out-of-plane curvature,
twist ratio, and twist shape. Aerodynamic functions are
local circulation, local induced velocity, total lift coeffi-
cient, total induced drag coefficient, lift-drag ratio, and
induced power coefficient. Further details of the shape
design variables arc given next.

Lifting line shape

The reference blade in Figs. 1 and 2 is positioned at
the 90 degrec azimuthal angle. The origin or center of
rotation is on the blade root one quarter-chord away from
the leading edge. The inplane position y, and out-of-planc
position z, of the lifting-line are assumed to have the
form:

y=fm=ex*; z=g(x) = kx
where x is the spanwise direction, £ is the inplane curva-
ure, and x is the out-of-planc curvature. All quantitics
arc nomnalized with respect to blade radius, R, When €,
and x are cqual to zcro, il is a straight lifting-line. The
rotor blade can have cither backward inplane curvaturc
(e>0) or forward inplanc curvature (€ <0) and have
eithcr upward curvature (x <0) or downward curvature
(x> 0). Also, we assume that lel, and Il arec smaller than
0.3 so that the lifting-line theory remains valid.

2

Chord distribution:

The chord length c(x) normalized with respect 10 root
chord has the following variation along the spanwise
dircction :

== 1+ xh- D111 - 5P

where A is the taper ratio and is defined as the ratio of tip
chord ¢, to root chord c,, shown in Fig. 2. Note that we

definc A as the inverse of conventional taper ratio, When
A is equal to 0, the blade is triangular.

The tip shape paramcter is denoted p and is always
positive. The physical mcaning of p is to define the tip
shape of a blade as shown in Fig. 3. The tip length
parameter is denoted B and is also positive. The physical
mcaning of B is to define the extent of the tip taper as
shown in Fig, 4. In general, all cases of chord distribution
can be defined on thc combinations of these three
paramcters.

Another important design variable is the solidity &,
(or the aspect ratio AR,) which is defined as:

be, b

O=TR " TAR)




where b is the number of blades, AR is the aspect ratio,
and ¢, is the equivalent chord, whxch is based on the

equivalent thrust generated by the reference rotor with a
rectangular planform, and has the following form:

1
f XTe(x)dx
¢, =———— = K(mABp),
on"'dx

where m is the weighting factor index and is dependent
on design criteria, such as blade arca or arca, thrust, or
torque weighted solidity. Once m, B, p and A are specificd
for a rotor, K can be analytically expressed in terms of the
Gamma function as :

K=K +QA-1)K,

wherc
K, = _m) Brp+) TP + mfB)
C(p+14B + mP)
K. = {mt1) L+ T(2B + mpP)
- T(p+1+2B + mP)

In order to calculate sensitivity derivatives, it is
necessary 1o derive d K/d A, d K/d p, and 0 K/d B, which
arc analytically expressed in terms of the Gamma and
Digamma functions as " and y respectively:

x_y

oA 2

oK

ap Ky - y(p+14B + mp)]

+ (= D) Kylyp+1) - y(p+1+2B + mB))

S5 ) B ns1) w195 )|

+ (-1 K{B + (m+2) y(2B+mP) — (m+2) y(p+1+2p + mB):l

Twist distribution: _

The normalized twist anglc of attack 6(x) with
respect to twist angle at blade root along the spanwisc
dircction is defined in the following form:

6 =2 - 14 Bqo

60
where 7 is the twist ratio, defined as the ratio of tip twist
6, to root twist 6,. 8 is the twist shape parameter and is

always positive. The physical meaning of t is to define
the twist distribution along a blade as shown in Fig. 5.
The rcason behind this t definition is that an ideally
twisted blade can be approximately modclled by concave
twist (i.c., O<t<1). In order to calculatc sensitivity
derivatives, it is necessary to derive d 8/d 1, and 4 0/9 8
which arc cxpressed as:
ae(x)
ot

ia%g—fl = I P -1

T ical Derivati

Governing equation for circulation:

To derive the goveming equation for circulation, we
assume that the flow field is incompressible. Each blade
is represented by a curved lifling line. The circulation
along cach lifiing line is T'(r). Since I' varics along the
blade, vortex filaments must trail behind the rotating
blade by dT/dr. It is further assumed that the trailing
voricx system is an undistorted wake and moves
downward with a climb velocity, V..., which is equal to

the sum of the rotor axial velocity and the averaged in-
duccd-velocity around the rotor disk. The derivation fol-
lows similar derivations which have been developed in
Refs. 12-13. However, an additional term of downwash
due to the sclf-induced velocity from the bound vortex of
lifting linc has to be included. A similar study for fixed-
wing cases can be found in Ref. 14. The governing equa-
tion used to solve for local circulation, T, is very similar
to those contained in other references. See for example,
Ref. 6, Eq. (34) or Rel. 15, Eq. (3.17). It is the integro-
differential equation which has the following form:

S8 - vl = ZT(x) )
where
v{x) = u(x)+:; V(x) =y, (x) + V{x);
bce Kbc _ ()
o= JR R R W= I;r
R0,

here, a is the lift slope =2r and v, is the climb inflow
ratios. vy and v, arc the induced inflow ratios, con-

tributed by the curved lifting-line and trailing vortex lines,
and can be derived by Biot-Savart Laws as:

1 1 —
UL(x) =7 2 Sr(ﬂ)dﬂ

A0y _miierix+ )2+ 11"
b
-1 (ldl
Vyx) = HIOZE

J""n ( 1+£2n2) x(1+e2 2 0511( 1+£zr12)° 5cos(\|;+8—§) dydn

T

where

|R1? = n20+ende2(1462)

- 2x(1 +32x2)° Sn( 1+ez‘r\2)0'5cos(W+8—(;)+(1)C\|r—1<'r\2+nc,\2)2
and

V=wy+ 21:@; {=1an"}(ex); 8=1an"(em)



Note that v, is the induced velocity due to the bound vor-

tex of an inplane curved blade. We neglect the effect of
the curved lifting-line from other blades. However, the in-
fluence of the trailing vortex lincs from other blades has
been included.

Equations for aerodynamic function:

Once T'(x;) and v{x,) are obtaincd along the spanwisc
position x;, (by solution of governing cquation) thc total
lift cocfficient C; total induced drag coefficient CD'_, and

total induced power coefficient Cp arc:

f:p@l’(r)dr _
e < ARYAT()Ax;
0, p(RQ)SLH, ?’ 7
_ J':prﬂw‘(r)r(r)dr Et _
= = AR ) xT(x)v(x)Ax;
0, p(RQ)S.0, R
P, CL CDi
9, "o, "8,

~ DLARZxI"(x)Ax + AREt T(x)ox)Ax;

where Sy is lhc blade arca and i lS cqual to Re,. (Note that
our definition of S is diffcrent from those normally uscd

in the helicopter ficld.) If we divide the equation of tolal
induced power coefficicnt Cp by Cp, it gives an index to

judge how good a rotor is by the use of lift-drag ratio,
C,/Cp,. This design index is slightly different from those

in the fixed-wing field?, which use C2/Cp, .

Governing equations for derivatives of circulation:

To obtain aerodynamic derivatives, we usc the con-
cept developed by Yates in Ref, 16. Take partial deriva-
tive of Eq. (1) with respect to a typical design variable
denoted Q as: '

0 [oa_ )]
= =T

30 :,KC(x)[xB(X) v(x)} } aQ{ )

Solve Eq. (2) for the derivative of circulation, 9r/3Q. The
governing cquations for the derivative of circulation with
respect to cach shape design variable can be expressed as:

K{\_RB_I“JrQy_: _KARX 9 KA:R T 3

nc oA oA Imc[l4y(1+A)] OJA| wc
KARIT  dv _ O.SKARywlﬂ__B_[KAR) =@

e OB B | mp B
KARQT  dv_ KARIn(1-y") 3 (kAR |z ©)
x dp ap nop? dp| wc

KAR or LB _ KT (6)
nc dAR JAR ™ _mc N

KARJL dv_ 30 )]
" oK ot XN S

KARJL dv_ 30 ®
nc 08 95 90

KARIT dv _ , ©
nc 65+ax_0

KAROT  dv _ (10)
—_— ae+ae_0

where 9 v/9 Q, in Eqgs. (3)-(8), is expressed as:
Bu(x) fz(ar/agr

n°(1+e™n )—m*k1+e’x’)(1+s2n’)cos<w+&c) an
&’ *

However, d \)/8 kand dv/de have ihe following forms:

a3 v(x) d(ar/ax) .
aKx I 2 i ;,
rr‘l '

J‘;"n (1+52n2) m\f(usz\:;g(l% )cos(w+8—§) dydn

b
3 ldl
ZTEJQZE]- S
n=1 )
(m*—xmeos(g+8-0)m> -3 (v y-xnZ+ix?) (12)
[ 7 dydn

b
du(x) _ -_1 Ilzdga T/d¢)
de '

n=1

J""n (l+e yl L. xq\/(l+e % §(1+62n2)ﬂcos(\47+8—-§) dydn.

Jz |‘1’[€"

ezt Jeos+8-Lytan(e - )Lx‘n)sm(wH)] dud

V(1+e2H)(1+e*n%)

b
ij ‘Zir N1+ -V +etP (146" M%) +cos(§+8-0)
m

&P

ren*+ex? -

axq(x2+n2+2£2x2)g)s@+8—§)+xn(szxﬁ—1)(x—n)sin(\i+8—§)] dydn

\ﬁ+e2x2)(l+szn2)

o

S L R

et L 4 |

" 'l,a‘m\ .

R L R




1 2 _ _ 1
. #;;(&n)i&;n 3)2(€+2'_‘5)F(n)dn (13)
= nilEe+) (x +M)* + 1]
Once dT (x)/Q and 9 v, (x;)/0 Q are obtained along
the spanwise position x;, (by solution of goveming equa-
tion) and the 9C,;/9 Q,9 c,,l_/a Q, and ac,,i/a Q can be

easily found through the chain rules from equations of
CL, CD.’ and CP.'

N ical Soluti

Solutions for circulation:

Two numerical methods have been developed to
solve Eq. (1) for circulation. These are (a) the Multhopp
Interpolation technique, which is a special case of Fouricr
Scries method and widely used in fixed-wing cases and
(b) the Vortex Lattice Method, which can be casily cx-
tended for lifting-surface theory.

Multhopp Interpolation Technigue: The idea is 1o
transform the spanwise coordinate by :

5 = 1- cc;sg ?)
and replaces the downwash integral vy (x) in Eq. (1) with

midpoint trapczoidal rule summation to obtain:
b —
-1 (¢ dr
i) = o) 34
4z 0n=l an

(e V(1+e52)(1+e70 ) cos(@+5-L)
J: dydn

—3
[Fi
_IMFE] (14
~ i &l go | L
aM 5 de
where
b
Py = Z‘:
n=1
n,z( 1 +ezn,2)—x,-'q ,\l(l+e2x?)( 1 +£2n,2) cos(y+3-C)) (14-a)
& K

| R, i 2 (el (1+e20)
-2xm Vi (1 +e2x‘-2)(l+eznr) cos(W+8—C,-)+(uc\y—m2+Kx?)2
and

=32

iR,.,I =n2(l+emnPpai(1+e%c)
-2xm ,\f ( 1+82x?)( 1+£2n,2) cos(W+8,—C,-}+(uc\|l-m,2+m%)2
Equation (14) represents the downwash due to M trailing
vortices of strength (dT'/d ¢ )(n/M), which are along

the helical wake and are located at:

05
o =A% o1 m

with control points located at:
@ = o i= L M-
The Multhopp Interpolation formula suggests that:
) M-1 M-1 (15)
M@= 2. T; X, sin(mg) sin(me)
_ =1 £:=l
where I"j represents I‘((pj) and

o =08 j=1,.M-1

Equation (15) is based on the following orthogonality
property:

2 M-1

i Zsin(mpj) sin(me;) = §;;

m=]
here, 8,-j is the Kronecker—delta. When Eq. (15) is used
in Eq. (14), vy (x;) reduces to :
: M M-1 M-l

-1 = .
V) = — 3 3 T, 2m sin(m@;) cos(m@,) P
M0 A e
M-1 (16)
- T~
=24 T
IS
where
1 M M-1
AiTj = W Z Zm sin(m(pj) cos(mg) P
I=1 m=1

herc, AE are the influence cocfficients of trailing vortices

and can be solved for by numerical methods without any
difficulty, if x; and n, are specified and P;; can be calcu-

latcd. However, P;; contains an intcgral with an infinite

upper limit and no closcd-form solution exists. A numeri-
cal solution has been developed by the current authors in
Ref. 17 1o calculate P, scmi-analytically. Results are very
accurate with minimal computation time.

Similarly, if we replace the downwash integral vy (x)
in Eq. (1) with the Multhopp Interpolation formula at
control points x;, then v, (x;) becomes:

1 £

1 —
v (x) = - IF(n)dn
¢ 4"I°lxi ~Nile+)%x; + M + 1] L3

1

g R UL

M-1 M-1

= _ZMLn Z I_"]-Zsin(m(pj)
=l mel

]E sin(me) sin(@) d ¢
0 I cos(¢g,) ~ cos(g) |
M-1 - amn
= 2 AT
71



where

M-1 n
L_ _E . sin(me) sin(p) d ¢
b7 2 Zsm(m(pj) £ I cos(,) — cos(@) |

here, Afjf are the influence coelficienis of bound vorticcs
and contains an integral with a Log singularity. This in-
tegral diverges when @; is equal 10 @. It should be inter-
preted in other than the usual sense. The answer is given
by the concept of the "finite part” cstablished by
Hadamard'® and has been applied to fixed-wing cascs in

Ref. 11. In Appendix A of this paper, we show that AL

can be obtained analytically if T is expressed as thc
Fourier sinc serics. In Eq. (17), we apply the assumption

of small (x + 5)2. Cases for large (x + 5)2 can also be cal-
culated clegantly and are described in Appendix A.
Finally, substitution of Eqgs. (16) and (17) for the
downwash in Eq. (1) and application of resulting equation
at spanwise location @; gives a (M-1)x(M-1) matrix
equation for M—1 valucs of I"’s as:
_ a (18)
2 A;T; = x,8,-v./0,, i=1,.M-1

where
j = Ay + AL+ 8, KAR/(T,)
Oncc F 5 are obtamcd CL, CD,CL/CD, and CP, can

be calculated as described before. The local induced
velocity v, (x;) is found as:

Vix) = Vx) + v x) = Z (A; + AT

Yoriex Lattice Method (VLM) The conventional
VLM discretizes the rotor span into a number of panels,
M. The trailing point is locatcd at the boundary of cach
pancl, and the control point is placed at the midpoint of
cach pancl, However, there is a comrovcrsY as how o
choose collocation points. Scveral papers % have
shown that this conventional VLM converges slowly and
docs not appear to approach the correct limit for fixed-
wing cascs. A similar phenomenon has been found for
rotary-wing cascs in Refl. 15. All these papers suggest that
the scmi-circle collocation points, which are defined in
the Multhopp Interpolation technique, are cssentially re-
quired for VLM when the fastest ratc of convergence is
desired. Most researchers have sclected collocation points
arbitrarily or equally-spaccdly. Such selection may be
adequalte for aerodynamic analysis. But, it is not suitable
for acrodynamic sensitivity analysis.

The VLM in this paper uscs the semi-circle colloca-
tion points 10 solve Eq. (1). For the trailing downwash
intcgral vy (x) in Eq. (1), we apply the first order finite

difference on T with midpoint trapezoidal rule summation
to obtain AE as
r_ 1 (19)
Aj = 3¢ (P~ Py)
where Pis defined by the Eq. (14-a). A common way to

calculate Af-J'- is described in Ref. 6. The straight vortex

filament with unit circulation is streiched from cach trail-
ing point. Then, the sum of this vortex filament and Eq.
(19) is equivalent to the influence of a horseshoe vortex
at panel j at control point x;. However, this approach is
not completcly rigorous, since the curved lifting-line has
been approximated by several straight vortex filaments.
Another way (used in this paper) to solve the problem is
to apply Egs. (17) and (19) for downwash calculation in
Eq. (18), since both equations have the same control

points.

Solutions for derivatives of circulation:

Two numerical approachcs can be used to solve Eq.
(2) for derivatives of circulation and result in same
numerical solutions. The first one is to discretize Eq. (2)
by following the path of discrctizations used for solutions
of circulation. The sccond approach simply differentiates
a sct of cquations (cxpressed in equation number (18))
with respect 1o a particular design variable Q. Then, we
solve a matrix cquation for M-1 values of derivatives of
circulation, which can be expressed as:

M-l ar, 3(x8) M13a 20
; FY (aQ 2 20 Ur M-

jwhcrc

A, aAL aA a[KAR/(nc)]

aQ 3Q Q 00

Equation (20) is a sct of linear equations and can be
solved if the right hand side of Eq. (20) is known. How-
ever, not all terms exist for all cases. For example, the
term d Af-]‘/a Q cxists for nonzero inplane curvature €; the
term 3( x,6,)/d Q is valid for parameters of twist dis-
tribution; and the term 9 [ K AR/(m¢;)]/0 @ exists only
for paramclers of chord distribution. The procedures are
systematically analogous to analyses for circulation which
are described in the previous section,

Results

Test problems

Equations (1) and (2) have been normalized with
respect 1o some reference quantities. The following
parametric values will be used in this paper for the refer-
ence-blade:  0,=1, A=1, p=B=05 v =006,
§=06, x=t=1t=m=0, AR=10 (or 6=0.0637);



b=2, In some cases, we comparc rcsulls with different
chord distributions which are defined as:

(1) elliptic blades: A=1,p=0.5,=0.5

(2) rectangular blades: A=1,p=0,=0

(3) triangular blades: A=0,p=0,B=0

(4) wapered blades: A=15,p=0,=0

(5) parabolic blades: A=1,p=0.5,=0.5
where all blades have the same solidity bascd on the same
blade arca (i.c., m=0). Figurc 6 shows thc normalized
quarter chord distribution along the spanwisc direction for
these blades.

Effect of number of panels or terms, M _

Table 1 is the convergence results of circulation ()
and derivative (dI'/dx) with respect to out-of-plane curva-
turc (x) for an elliptic blade at midspan x = 0.5. This table
implies that acrodynamic functions and dcrivatives are
equally accurate from both Multhopp Intcrpolation for-
mula and VLM but are scnsitive to the number of dis-
cretization panels and terms M. Also, the analytical
methods are confirmed by the finite difference method
which solves Eq. (1) twice with k=0 and x = 0.001. The
similar accuracy is also obtained for C; CD;’ Cp and its

derivatives. For a reasonable number of tcrms or pancls
(M=20), the mcthods providc approximately 4 digits of
accuracy for acrodynamic functions and 2 digits of ac-
curacy for acrodynamic derivatives. The following results
for this paper are basecd on M=20 by the Multhopp Inter-
polation formula.

Effect of curvatures of the the lifting line
Figures 7-9 are results of C;,Cp and C;/Cp as

functions as out-of-plane curvaturc x for various blade
shapes. Figure 7 shows that C; is nearly proportional to

. However, Cp, is nearly constant for each blade shape
shown in Fig. 8. Results of C,;/C;, in Fig. 9 have the

similar trend as those for C;. Thercfore, by curving the

blades in the opposite dircction of thrust (i. ¢., x> 0), the
rotor would be more efficient. The rcason is because the
trailing vortex lines move away from the blades when x is
incrcascd. Consequently, the induced velocity along the
span is dccrcased and the thrust is increased. This
phenomenon is clearly shown in Figs. 10 and 11. Figure
10 presents the variation of circulation along the span.
Figurc 11 presents the variation of induced velocity. It is
intcresting to note that the inboard region (x = 0 — 0.8) is
improved when x is increascd. Unfortunatcly, such a
blade is physically unrealizable duc to the fact that the
helicopier blades have to cone up (i. ¢., x<0) to compen-
satc the centrifugal forces for structural considerations.

"~ For effects of inplane curvature €, similar trends of

results have been found as shown in Fig. 12 for C,/C),.

The rotor lift-drag ratio will improve when ¢ is increased.
Therefore, by sweeping the blades backward (i. e., € > 0),
the rotor would be more efficient. Figure 13 presents the
variation of circulation along the span. Figurc 14 presents
the variation of induced velocity. Note from Figs. 13 and
14 that the outboard region (x = 0.4 — 1.0) has been im-
proved when € is increased.

One might wonder how much additional improve-
ment might be made by the combinations of ¥ and €. One
answer is shown in Fig. 15 where contour lines of C,/Cp,

arc plotied for different values of x and e. It clearly
shows that posilive x and € can always improve the lift-
drag ratio, C,/Cp,, of a straight blade (i.e., x = ¢ = 0). For

cxample, numerical results indicate that making
x=€=0.3 can increasec C;/C, by 16 percent as com-

parcd 1o the straight blade. However, making x =& = -0.3
can decrease this ratio by 10.4 percent. Also, Fig. 15 indi-
cates that the effect of x is slightly stronger than the ef-
fect of €. Figure 16 presents the contour lines of
0 (C,/Cp)/ 9 € which represent the slope of Fig. 15 with

respect o €. The peak value occurs around £=0 and
Kk =0.05. It is obscrved, from Figs. 10 and 13, that dual
peak circulations appear. This is very common for rotors
which do not have an idcal twist. Unlike the conventional
blade element theory, the three dimensional undistorted
wake model in this paper can caich this "dual peak”
phenomenon. Cascs for different twist distributions and
inflow ratios have also been investigated. All results indi-
catc that positive x and € arc very promising parameters
to increasc lift in the inboard and outboard regions
respectively without introducing an additional induced
drag.

Effect of chord distribution

Figures 7,89, and 12 indicate that elliptic and
parabolic blades are better than rectangular blades. For
cxample, parabolic blades always provide more lift with
thc same induced drag than rectangular blades. Elliptic
blades can provide the maximum C; and Cp. For all
bladc shapes, a casc with larger C, is always accom-

panicd with larger Cj, and vice versa. Although triangular
blades provide the maximum C;/Cp, they are not
desirable. The recason is because C; and Cpy are also very

small and this design is unrcalistic due to the need for
larger C; 10 provide sufficient lift. A compromise design

is by the use of tapered bladces, as shown in Figs. 7 and 9.



Such blades can provide the minimum dcsired lift with
rcasonablc lift-drag ratio.

The results for effect of aspect ratio are shown in Fig.
17-20. Figure 17 indicatcs that C; grows with increased

aspect ratios for all blades. However, Cp, shown in Fig.

18, incrcases when aspect ratio is smaller than 9. Then, it
decreases  with a larger aspect ratio where the flow ficld
is approaching the two-dimensional case and the induced
velocity tends to decrease along the span, Figurc 19
shows the results of CL/CD,. and indicates that C;/Cp, is

ncarly proportional to aspcct ratio. Figure 20 is the result
for the derivative of C;/Cp,. Increasing the aspect ratio is

increasing the lift-drag ratio. However, the resulting in-
creasc in blade weight would tend to limit the increasc in
aspect ratio. Results for variations of p, B, and A and its
derivatives have also obtained and will be presented for
¢, /c D, only. Figure 21 indicates that variation of C;/Cp,

with tip length parameter, B, for an clliptic bladc has the
minimum value around p = 0.25. This minimum value is
around p = 0.20 with tip shape paramcter, p, as shown in
Fig. 22. Figure 23 shows that variation of C;/Cp with

taper ratio, A, for an elliptic blade has the maximum value
at A = 0.0 which represents the triangular shape.

Effect of twist distribution
The results for eflfect of T are shown in Figs. 24-26.
Figurc 24 indicates that C; is nearly proportional to T.

This is due to the fact that a large value of T provides
large angles of twist along the span. It is interesting to
note that, from Fig. 25, Cp decreascs when 1 is negative.

Conscquently, An optimum design of a rotor can be
specified around —0.05 <t <0.05, which arc shown in
Fig. 26 with maximum values of C;/Cp. The results for

the effect of & are shown in Fig. 27 which presents the
variation of C;/Cp. It scems to imply that an optimum

design is around 0.35 <8 < 0.40. However, This is only
partially truc due 1o the fact that a small valuc of t always
provides small values of C; and Cp,.

Conclusi
In summary, this paper offcrs analytical capability for
acrodynamic parametric studics and scnsitivity analysis of
rotary wings in axial flight by using a 3-dimensional un-
distorted wake model in curved lifting-line theory.
Analytical expressions are devcloped for acrodynamic
functions and sensitivity derivatives with respect to shape
dcsign variables including taper ratio, tip length, tip
shape, aspect ratio, inplanc curvature, out-of-plane curva-

ture, twist ratio, and twist shape. The governing equations
of acrodynamic functions and derivatives are solved by
using both Multhopp Interpolation Technique and Vortex
Lattice Mcthod. Numerical results show that acrodynamic
functions and derivatives are insensitive to discretization
mcthods but are sensitive to the number of discretization
panels. For example, for a reasonable number of terms or
pancls (M=20), thc methods provide 4 digits of accuracy
for aerodynamic functions and 2 digits of accuracy for
acrodynamic derivatives. e )

Also, it is found thal a rotor blade with out-of-plane
and inplanc curvature can theoretically increase lift in the
inboard and outboard regions respectively without intro-
ducing an additional induced drag. However, positive out-
of-planc curvature is physically undesirable duc to struc-
tural considerations, whilc positive inplane curvature € is
casier 1o obtain.

Appendix A
In Eq. (17), the finitc part (FP) for the following in-
tcgral which contains a 1/lx| type singularity is defined in
Ref. 11, Appen. A, as follows:
1 | —€
r=rp[- 40 -5 f
jO'X."n' "l d: T
1 A-1
o TN g 4 270 ne ) (A1)
n-cb; =7l
If the variable in Eq. (A-1) is transformed from 1 10 @

according to the semi-circle points, An equivalent equa-
tion can be obtained as follows:

n
- J(9)sin(p)d @
I=Ffp (J). I cos(p;) — cos(@) |

e T _f@)sin@)de

_ch—":b [JO I cos(g,) - cos(@) |

. J‘ _f@)sin@)d ¢
n+e, I cos(¢;) — cos(@) |

+2f(p)Ine ] &2

where

£
=2 sing

2
Equation (A-2) can be solved analytically if An) can
be expressed as the Fourier sine serics, For example, let
fm) be equal to sin (me@). Then,

/= pp | Sn@)sin@) dg
0 [ cos(qp;) — cos(¢) |

[ G@; m-1) - G(g; 1) ] 4-3)

[T

where

cos (mp)d @
I cos(¢g,) — cos(p) |

T
G(g;.m) = FP |
0



The integral G is obtained from the recurrence relation:

G(@; m+1) -2 cos (@) G(@; m) + G(g; m-1)=

where the initial integrals are:
G, 0) ==
@D = Snce

: G(@; 1) = 2¢;—m+ 4 cot (sin () In (sin ( §))
7 SUbS“t“"“g Eq (A-3)in Eq (17) we obtain
Lo 2 sin(me) sin(g) d @
Aj Zsm( me;) _[ Ico5(9,) - cos() |
. u Ad)
= mgsmww [ Glg; m-1) - G(@; m+1) ]

In (sin ( 9))

Equation (A-4) is only good for small (k+ 8)2. For cascs
for large (x + 8)2, we use Multhopp interpolation formula

for (M)T(n) as:
: M—l M-1
Z ( hl") Z sm(m(pj) sin(m)
. rl
where
hm) = .
[+ +m)2+ 11

1 (A-5)
[(e+k)% (1 - 0.5cos(@,) — 0.5cos(g))? + 11
Substituting Eq. (A-5) in Eq. (17) we obtain

Ak = €
" AM R+ (1~ 0.5c0s(@) - 0.5cos(@)? + 11
M-1
2. sin(m@) [ G(¢; m-1) - G(g; m+1) ]
m=1
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Table 1 Convergence of circulation and derivatives
with respect to x for an clliptic blade at midspan,

circulation derivatives at midspan, 0 /9«

Number circulation at

of terms/ midspan, T (0.5) Analytical Methods Finite Difference Method

panels, M Multhopp VLM Multhopp VLM Multhopp VLM
8 0.01950 0.01970 0.00468 0.00470 0.00468 0.00470
16 0.01951 0.01957 0.00468 0.00468 0.00467 0.00469
24 0.01951 0.01953 0.00470 0.00470 0.00470 0.00470
32 0.01951 0.01952 0.00471 0.00471 0.00471 0.00471
40 0.01951 0.01951 0.00472 0.00472 0.00472 0.00472
48 0.01951 0.01951 0.00473 0.00473 0.00473 0.00473
56 0.01951 0.01951 0.00474 0.00474 0.00474 0.00474
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